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Carbocycles, as exemplified by morphine and the steroids, can Table 1. Opening of Bicyclic Epoxides with Grignard Reagents?
be potent drugs. Although computationally based receptor binding

Entry Starting material Grignard  Product(s) Yield (%)
analysis can lead to potential new drug candidates that are
polycarbocyclic, such leads are often not pursued, because of the Ph Ph
perception that even if it turned out to be active, an enantiomerically // | |
pure polycarbocyclic agent would be too expensive to manufacture. MgCl o~
We report a simple, efficient route to enantiomerically pure 1 Do 1a ﬁ ' 2a 83
carbobicyclic scaffolds such & starting from prochiral cyclic | OH
ketones: Ph Ph
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Bicyclic epoxides such akal were available in high enantiomeric <>O 1c | 88
purity using the method of SRiThe key to our proposed approach pn O
was the selective opening bé at the more substituted carbon atom Ph
with an sg-hybridized organometallic nucleophileo give 2. We // | |
envisioned that if the right combination of Lewis acid, to activate 4 N MgCl WSphog 4
the epoxide, and nucleophilic organometallic could be found, such CDO 1b Ph
a selective opening might be possible. A precedent for this approach OH
was the addition of hydride to geraniol epoxidé Ph Ph
z // MgCl ll s\/
: > NN~
OH  NaBH,CN : 5 OO 1b /-‘D) ' 2¢° g5
BF5"OEt, OH
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The challenge of opening epoxida at the more substituted // MgCl ||
carbon atom turned out to be much easier than we had anticipated. 6 \\/
We were pleased to observe that uncatalyzed allylmagnesium CBO 1b oH x* 76

chloridé smoothly openeda to give the secondary alcoh@h.
X-ray analysis of the derived 3,5-dinitrobenzoate confirmed that

: i : 3 : aTypical procedure for opening of epoxides: Grignard reagents(4
the opening had proceeded with inversion of configuration. equiv) was added under,Nnto a THF solution of epoxide at &C. The

resulting solution was warmed slowly to room temperature and stirred at
this temperature overnight. Two isomers are in a 2:1 ratio, which was
determined by'H NMR. ¢ Combined yield of two isomers.

Ph
Ph MgCl
/o0 I
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QO not U PR While the enantioselectivity of cyclopentene and cyclohexene
2 OH 6a N
a

1a epoxidation by the Shi protocol had been repoftéide enantio-
selectivity of cycloheptene epoxidation was not known. We
Five- and six-membered ring epoxides (Table 1) gave similar determined thaRa was a 13.6:1 mixture of enantiomérdhe
results. We expect that the opening of the oxirane proceeds throughabsolute configuration cfawas confirmed by conversion (Scheme
a “borderline §2" mechanisnf, with the alkyne stabilizing the 1) to the ketone, [a]p = —36.3 € 0.9, THF, ee= 86%), lit® [a]p
incipient positive charge. We briefly explored alternative nucleo- = —20.7 € 2.8, THF, ee= 51%).
philes with the epoxidelb. We found that allylic and benzylic The epoxidation and ring opening sets two stereogenic centers.
Grignard reagents gave the desired ring-opening products (entriesWe found that, as we had anticipated, intramolecular alkylation
4—6 in Table 1). This promises to be a general method for the proceeded smoothly to establish cis carbobicyclic ring systems
direct enantioselective construction of quaternary centers that are(Table 2). The results in Table 2 demonstrate that a variety of cis
part of carbocyclic rings. carbobicyclic scaffolds can be constructed. The alkynyl and sulfonyl
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aReagents and conditions: (a) 9-BBN, THF; NaOHCH (ref 10); (b)
Pd/BaSQ, pyridine, H; (c) NaH, TBAI, THF, BnBr, reflux; (d) @, CHCly;
PPHh; () NoHa, HOCH,CH,OH, 210°C; (f) Hy, Pd/C, EtOH; (g) Dess
Martin reagent (ref 11), C¥Cly; (h) "PriPPhRBr—, BuOK, THF; (i) Hg,
Pd/C, EtOH.

Table 2. Construction of Cis Carbobicyclic Ring Systems

Entry  Starting materials Reagent  Product®®  Yield (%)
Ph
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a All products are single diastereome?®Ref 12.¢ Starting from2a, TsCl,
pyridine, DMAP; G, CH,Cl,; PPh. d Starting from13, NaOH, PhSH;
mMCPBA. ¢ Starting from2a, 2b, and2c, BsCl, pyridine, DMAP; Q, CH.Cly,
MeOH; NaBH;; MsCl, EgN, CH,Cl. f Starting from2a, BsCl, pyridine,
DMAP; mCPBA, CHCly; BFs-Et,O, LICH,SOPh (ref 13); DessMartin
reagent, CHCl;; HOCH,CH,OH, THF, HC(OEt} (ref 14).

groups are versatile and can be converted into other functional
groups. It is also possible to include other functional groups in the
ring, as shown in entry 4.

While many methods for polycarbocyclic ring construction have
been developed, only a few of these lead directly to enantiomerically
pure products. We expect that the approach to enantiomerically

pure carbobicyclic scaffolds outlined here will be of general utility
in the stereocontrolled construction both of natural products and
of drug candidates.
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